
(~) ~ Computer Graphics, Volume 21, Number 4, July 1987 

Set Operations on Polyhedra Using 
Binary Space Partitioning Trees 

W i l l i a m  C.  T h i b a u l t  

G e o r g i a  I n s t i t u t e  o f  T e c h n o l o g y  

A t l a n t a ,  G,4 3 0 3 3 2  

a n d  

B r u c e  F.  N a y l o r  

,4 T &  T B e l l  L a b o r a t o r i e s  

M u r r a y  H i l l ,  N J  0 7 9 7 4  

Abstract  
We introduce a new representation f o r  polyhedra by showing how 
Binary Space Partitioning Trees (BSP trees) can be used to represent 
regular sets. We then show how they may be used in evaluating set 
operations on polyhedra. The BSP tree is a binary tree representing a 
recursive partitioning o f  d-space by (sub-)hyperplanes, for  any 
dimension d. Their previous application to computer graphics has 
been to organize an arbitrary set o f  polygons so that a fas t  solution to 
the visible surface problem could be obtained. We retain this pro- 
perty (in 3D) and show how BSP trees can also provide an exact 
representation o f  arbitrary polyhedra o f  any dimension. Conversion 
f rom  a boundary representation (B-reps) o f  polyhedra to a BSP tree 
representation is described. This technique leads to a new method for  
evaluating arbitrary set theoretic (boolean) expressions on B-reps, 
represented as a CSG tree, producing a BSP tree as the result. 
Results  f rom  our language-driven implementation o f  this CSG 
evaluator are discussed. Finally, we show how to modify  a BSP tree 
to represent the result o f  a set operation between the BSP tree and a 
B-rep. We describe the embodiment o f  this approach in an interactive 
3D object design program that allows incremental modification o f  an 
object with a tool. Placement o f  the tool, selection o f  views, and per- 
formance o f  the set operation are all performed at interactive speeds 
for  modestly complex objects. 

CR Categories 1.3.5 [Computer Graphics]: Computational Geometry 
and Object Modeling - object representation and geometric algorithms. 

Keywords - polyhedra, set operations, geometric modeling, geometric 

search, point location. 

I .  Introduct ion 

While the study of polyhedra has an ancient history, computer science 
has given it renewed attention in the various sub-disciplines of compu- 
tational geometry, geometric modeling, computer graphics, robotics, 
and computer vision. Its attractiveness stems from the relative simpli- 
city of linear computations when compared to non-linear, coupled with 
the fact that linear approximations of non-linear sets can often be quite 
satisfactory. An important example of this comparative simplicity is 
set operations: union, intersection, difference and exclusive-or (and 
their complements).  The algebra of set operations defined on the col- 
lection of linear sets of any dimension ~< some d is closed (assuming a 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the AC M  copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a fee and/or specific permission. 

© 1987 ACM-0-89791-227-6/87/007/0153 $00.75 

countable number  of operations). This is not true of non-linear sets; 
for example, the intersection of two quadrics (second degree) can be a 
fourth degree curve. When computational speed is important, such as 
in interactive object design, using polyhedral approximations of non- 
linear solids can provide a very effective alternative to non-linear com- 
putations. On the other hand, for operation~ which are not speed- 
critical, a second unapproximated non-linear representation can be 
used, if the greater accuracy is needed. 

The most prominent method of representing polyhedra at this t ime 
would appear to be boundary representations (B-reps): in a d dimen- 
sional space, a d-polyhedron (also called a d-polyto]ge) is represented 
by a set of (d-1) -polyhedra ,  called faces, which are in turn 
represented by (d-2) -po lyhedra ,  and so on until d equals 0, at which 
point the d coordinates of a vertex are used. An alternative suitable 
for representing convex polyhedra is provided by the volumetric 
approach, where the intersection of a set of halfspaees determines a 
polyhedron. 

In this paper, we develop a new approach first presented in [Nay186] 
and describe in greater detail in [Thib87]. It is based on the dimen- 
sion independent concept embodied in the Binary Space Partitioning 
Tree, abbreviated BSP tree, which, at its simplest, is a binary tree 
whose non-leaf nodes are labeled with hyperplanes and whose leaves 
correspond to cells of a convex polyhedral tessellation (partitioning) of 
d-space. The approach provides what is essentially a volumetric 
representation of general linear polyhedra. What  we mean by general 
is that any genus (handles/holes) is permissible, any number  of con- 
net ted components (separate objects), and regions of connectivity with 
no interior, such as two parts connected only by a vertex. More gen- 
erality is available in that the interior of the polyhedra need not be 
completely bounded, i.e. it may be (semi-)infinite. 

Previous work has established the BSP tree as an effective representa- 
tion of polyhedra for efficient visible surface determination, both in 
polygon tiling environments [Schu69] [Fueh80] [NaylSl]  [Fueh83] 
and for ray-tracing [Nay186] (Figure R A Y - T R A C I N G ) .  In this 
paper, we concentrate on the problem of evaluating set operations, the 
set theoretic analog of boolean operations, defined on 3D polyhedra. 
This takes two forms. One begins with a set (theoretic) expression 
represented as a tree (i.e. a CSG tree) defined on a set of polyhedra 
represented by B-reps. The method produces the polyhedron defined 
by the CSG tree by constructing its (non-unique) BSP tree representa- 
tion. The resulting tree can then be used for rendering by the tech- 
niques referred to above or as input to the second approach. The 
second approach takes a BSP tree as one operand and a B-rep as the 
other and produces a new BSP tree determined by the set operation via 
modification of the original tree. We have used this technique as the 
basis for an interactive program that  supports modification of a work 
piece, represented by a BSP tree, through the adding, subtracting or 
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intersecting of a tool, represented by a B-rep. 

2. Representat ion  of  Po lyhedra  by B S P  Trees  

2.1 Generic BSP Trees l 

A BSP tree represents a recursive, hierarchical partitioning, or subdivi- 
sion, of d-dimensional space. It is most easily understood as a process 
which takes a subspace and partitions it by any hyperplane that inter- 
sects the interior of that subspace. This produces two new subspaces 
that can be further partitioned. Figure BSPT illustrates the relation- 
ship between the partitioning of space and the corresponding BSP tree. 
In (a), we see a recursive partitioning of the plane. Note how parti- 
tioning first by u produces two subspaces whose subsequent partition- 
ings proceed independently of each other. The distinction between the 
two halfplanes formed by a line is indicated by the orientation of the 
normal vector to each line (indicated by arrows). Which of the two 
possible orientations is used is typically arbitrary. Now referring to 
(b), we see that in the corresponding BSP tree, each (sub-)line is asso- 
ciated with an internal node of the tree. The right subtree of each 
internal node represents the region of the plane lying to the side of the 
line pointed to by the normal. The left subtree represents the other 
side. The resulting partitioning produces a set of unpartitioned sub- 
spaces that correspond to leaves of the tree (labeled with digits). 

, / 

Y' 6 / \  

Ca) 

f \  
/ \  
' / \  

5 6 
(b) 

Figure BSPT. Geometry of a 2D partitioning (a) and its BSP tree (b). 

More formally, for a hyperplane 

H = {(xl ..... xd ) la~x l  + ' • • + adxd+ aa+l ffi 0}, 

the right (or in B-rep parlance, the "front") halfspace of H is 

H-I- ~ { ( 3 f l  . . . . .  x a ) l a l x l  d- • , • d- adXd+ aa+j > 0}, 

and the left (or "back") halfspace of H is 

H -  = {(xl ..... x a ) [ a l x l  + • " " + adXd+ aa+l < 0}). 

The right side of H lies to the side of H in the direction of the 
hyperplane's normal, (al,...,aa). 

Each node v represents a region of space R (v) (to be defined below). 
Leaves correspond to un-partitioned polyhedral regions, which we call 
cells. Each internal node v of the tree is associated with a partitioning 
hyperplane, Hv, which intersects the interior of R (v). The hyperplane 
partitions R ( v )  into three sets: R ( v )  f') H~ +, R ( v )  f') H ~ ,  and 

R (v) A Hr. The d-dimensional region in H + is represented by the 
right child of v, v.right, and the region in H~- is represented by the 
left child, v.left. The intersection of H~ and R (v) is called the sub- 
hyperplane of Hv, indicated by S H p  (v) ,  and is of dimension d - 1 .  

e ( v )  is the intersection of open halfspaces on the path from the root 
to v. More precisely, for each edge (VhV2) in the tree we associate a 
half space HS(v l , v2 )  defined as follows: for any node v, let 

I. This  section is an adaptat ion of work presented in [NaylSI ] .  

HS(v,v . le f t )  denote H~ ,  and HS(v,v .r ight)  denote Hv +. Let E ( v )  
denote the set of edges on the path from the root to v. Then 

R ( v ) ~ e ~ v H S ( e ) .  For the root node, whose E ( v )  is empty, R ( v )  is 

defined to represent all of d-space. Thus, R (v) is convex, non-empty, 
may not be completely bounded, and is topologically open. It also fol- 
lows that sub-hyperplanes have the same properties. An important 
relationship between sub-hyperplanes and regions is that the sub- 
hyperplanes associated with nodes on the path from the root to v con- 
tain the boundary of R (v). Finally, a trivial BSP tree consists of only 
a single node (a cell). 

2.2 Representation of Regular Sets 

A regular set S has an interior, an exterior, and a boundary denoted 
by int S ,  ext S ,  and bd S ,  respectively. A set is regular if it is the 
closure of its interior [Requ78], i.e S = el( int S ), where cl denotes 
closure. (The closure of a set consists of the set together with its 
boundary.) Given a BSP tree, we can use it to represent linear regular 
sets, and polyhedra in particular. We need to simply classify each cell 
as either in the set or out of the set. Each leaf then has at least one 
attribute, membership, with values E { in,  out }. For example, in Fig- 
ure BSPT, consider the set defined when cells 1 and 5 are assigned the 
value in and the rest are assigned out .  Since each cell is open (and 
therefore, has an interior) and is non-empty by construction, we can 
take the union of all in-cells and then form the closure of this union, to 
produce a regular set. 

S • c l (  y Ci), f o r a l l C i f f i i n  

Note that points lying between two in-cells are included in S and are 
in int S .  The boundary of the set consists of points between in-cells 
and out-cells, and all such points lie in sub-hyperplanes of the tree. 

bd S ~ ~ cl(C~) 0 c l (Cj) ,  f o r  alI Ciffi in, C j=  out 

Methods of constructing such representations will be described in sub- 
sequent sections. 

2.3 Point Classification 

We can show the sufficiency of the above representation by solving a 
problem studied in computational geometry [Prep85]. The point 
classification problem can be stated: Given a set S and a point p ,  
determine if p lies in int S ,  ext S ,  or bd S .  We assume S is regular 
and we have a BSP tree representing S .  Figure POINT-CLASSIFY 
gives an algorithm for solving this problem in d-space. The recursive 
process begins at the root of the tree and uses location of a point with 
respect to a hyperplane to control the search. To solve the problem, 
we must know whether the neighborhood of p is homogeneous, and 
therefore in or out ,  or non-homogeneous, and therefore on. If p lies 
in a cell, its neighborhood is known to be homogeneous. When p lies 
on some Hv, the search must be performed on both subtrees to deter- 
mine all cells in whose closure p lies. If the value of all such cells are 
not the same, p is known to be on,  otherwise it is known to be in or 
out ,  depending upon the value. (Note that the search could terminate 
whenever the first on value is encountered). While bd S has measure 
zero, it is given non-zero measure numerically by specifying an interval 
about zero which is mapped to "on the hyperplane", thus giving thick- 
ness to the hyperplanes. Machine precision determines a lower bound 
on this interval. 

In [Kala82], this problem is solved for 3D in O ( n )  for a B-rep with n 
faces. A result in [Nayi81] shows that this could be at most O ( n )  for 
any BSP tree constructed from n faces (the tightest known upper- 
bound on tree size is O(n  d) ). However, when a balanced BSP tree is 
of size O ( n )  (which may or may not be possible for a given set of 
faces), this can be solved in O (log n).  
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procedure point_classify (p : point; v : BSPTreeNode) 
returns {in, out, on} 

if  v is a leaf 
return the leaf's value (in or out) 

else 
let d m dot_product(p, Hv). 
if d < 0 then 

return point_classify (p, v.left) 
else if d > 0 then 

return point_classify (p, v.right) 
else (* p lies on the partitioning hyperplane *) 

I : ~  point_classify (p, v.left) 
r : =  point_classify (p, v.right) 
if  I ~ r then 

return r 
else 

return "on" 
end point classify ; 

Figure POINT-CLASSIFY. 

2,4 Augmented BSP Trees 

A common means of augmenting the generic BSP tree is to include 
other sets within the BSP tree structure, In particular, leaves can each 
include a collection of sets (objects) contained completely within the 
corresponding cell, e.g. [Schu691, and similarly, internal nodes can 
include sets lying in the corresponding sub-hyperplane, e.g. [Fuch80]. 
Traditionally, the motivation for this has been the visible surface prob- 
lem in 3D. Given an arbitrary viewing position, a traversal of the tree 
can induce a visibility priority ordering on the contents of the various 
subspaces (cells and sub-hyperplanes). Because of the usefulness of 
boundary representations for polygon tiling, polygons have been stored 
at the various nodes. We retain this visibility property by associating 
sets of polygons with internal nodes, where each set lies on the node's 
sub-hyperplane, and are in the boundary of the represented 
polyhedron. At each node v, these faces are separated into those 
whose normals have the same orientation as the normal of Hv and 
those whose orientation is opposite. 

3. B-rep -- '  BSP  tree 

We now examine converting a B-rep into an equivalent BSP tree. 
Essentially any of the many varieties of B-reps can be used, as long as 
they are sufficient and form a valid representation of a polyhedron. 
We use the term face to refer to the (d-i)-dimensional boundaries of a 
d-polyhedron, H/ to denote the hyperplane containing a face f ,  and 
we assume that face norma|s point to the exterior. 

The approach is essentially one that first appeared in [Fuch80] with 
one significant extension : assignment of values to leaves. The algo- 
rithm begins with a set of faces forming one or more disjoint polyhe- 
dra. At each stage, the recurslve process selects a hyperplane H and 
partitions the current set of faces F into three sets of faces, F(H+), 
F(H- ) ,  F (H) ,  corresponding respectively to the three subspaces 
H +, H - ,  H .  The partitioning of  a face, f E F, is defined as the 
result of forming the following three sets, one or two of which will be 
empty: 

f+  =cl(H÷ ("1 int f ), f -  mcl(H- ("1 int f ) ,  f o  zcl(int(H 0 int f )), 

where int is with respect to Hf.  Partitioning all faces of F produces 
F ( H + ) ,  F ( H - ) ,  F(H) ,  respectively. The set F(H)  is retained at a 
new BSP tree node v (separated into same and opposite lists). The 
process then proceeds recursiveiy on the other two sets until the 
current list of faces is empty (Figure BUILD-BSPT). 

Figure CONCAVE shows how the algorithm can create a BSP tree 
from a concave polygon. One note worthy consequence of this process 
is that each polyhedron is decomposed into a set of convex regions (in- 

a 

in out in out in out 

Figure CONCAVE. A concave set and its BSP tree. 

procedure Build_BSPT ( F : set of faces ) returns BSPTreeNode 

Choose a hyperplane H that embeds a face of F; 
new BSP : =  a new BSP tree node with H as its 

partitioning plane; 
<F_right, F_left, F_coincident, > : - partition faces of  F with H; 
Append each face of F_coincident to the appropriate face list 

of new_BSP; 

if (F_left is empty) then 
if (F coincident has the same orientation as H) then 

(* faces point "outward" *) 
new_BSP.left : ~ "in"; 

else new_BSP.left : -  "out"; 
else 

new_BSP.left :-- build_BSPT( F_left ); 

if  (F_right is empty) then 
if (F coincident has the same orientation as H) then 

new BSP.right : ~  "out"; 
else new_BSP.right : - "in"; 

else 
new_BSP.right : -  build BSPT(  F_right ); 

return new_BSP; 
end; (* Build_BSPT *) 

Figure BUILD-BSPT. Algorithm to build a BSP tree from a boundary 
representation. 

cells). Note that the only aspect of this algorithm dependent upon the 
particular B-rep variant is the splitting of a face by a hyperplane. 
While any order of selection wilt produce a BSP tree representing the 
same set, some orders produce more desirable trees. The issue of 

selecting partitioning hyperplanes can be somewhat complicated, and is 
discussed briefly in section 5.1. 

It is necessary, however, that all points on the boundary of the polyhe- 
dra lie in sub-hyperplanes of the resulting BSP tree (section 2.2 
above). This is accomplished most simply by always choosing a hyper- 
plane that embeds some face among the current set of faces. Eventu- 
ally, all points on the original fades will lie in snb-hyperplanes. The 
second requirement is the correct classification of cells. Assignment of 
values to leaves occurs when the partitioning of a set of faces finds no 
faces on one side of the partitioning hyperplane. That region is then 
known to be homogeneous, i.e. the region lies either entirely within the 
interior of one of the polyhedra or entirely in the exterior of all the 
polyhedra. We know this because for it to be non-homogeneous, there 
would be some part of a boundary to make it so, i.e. to mark the tran- 
sition between inside and outside. Therefore, the region forms a cell 
and can be classified as in or out. In this algorithm, differentiating 
between the two cases is simple. When hyperplanes are chosen from 
the (hyper)plane equation of some face, we use the fact that normals 
point to the exterior to deduce the fact that a left leaf must be in (in 
the back-halfspace of the face) and a right leaf out (in the front- 
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halfspace). Also, it is not difficult to show that when one subtree of v 
is a cell, any faces coincident with H~ wilt all have the same orienta- 
tion. 

Another quite similar approach involves an idea that we will need 
later: the concept of inserting a face into a BSP tree. Let us say that 
we had used the above algorithm to build a BSP tree out of only n - 1  
of the n faces. We could "add" the last face f to the tree in the fol- 
lowing way. Let v be some node in the tree, initially equal to the root. 
Partition f by Hr. If it is coincident, add it to the appropriate face 
list of v. Otherwise, pass any part of f lying in H~- to v.left, and simi- 
larly any part in H + to v.right. Now repeat the process recursively on 
the subtrees. If  and when a part of f reaches a leaf, create a new 
node. Now, if one begins with a trivial BSP tree, and inserts each face 
one-at-a-time, a BSP tree representing the polyhedra will be con- 
structed. 

Before leaving this discussion, we should point out that a much simpler 
case occurs when the input is a single convex polyhedron P of n faces. 
The above algorithm, when restricted to partitioning hyperplanes that 
embed a face, will always produce the same tree structure with n 
nodes independent of the order in which faces/hyperplanes are selected 
(Figure CONVEX).  Each right child is a leaf with value out and the 
only left leaf has a value in representing int P. This structure is very 
similar to a list of the minimal set of (closed) halfspaces whose inter- 
section equals P.  

/\o t 
/\out 

Figure CONVEX. A convex set and its BSP tree. 

4.  E v a l u a t i o n  o f  Se t  O p e r a t i o n s  U s i n g  B S P  trees  

Since we are concerned with regular sets, we are interested only in the 
regularized set operations [Requ78], which are denoted as such by an 
asterisk: O *, U *, - * ,  and ~ * .  First, consider the unary comple- 
mentation operator. Given a BSP tree representing a set S ,  a BSP 
tree representing its complement, ~ * S ,  can be formed by simply com- 
plementing the cell values: all in-cells are changed to out-celts and all 
out-cells to in-cells. Any boundary polygons at internal nodes must 
have their orientations reversed as well. A boundary representation 
can be similarly complemented by reversing the orientation of every 
face. 

To evaluate binary operators, we wilt use expression simplification in a 
geometric setting. Consider for example the expression S~ f"l * $2. 
If we have determined that, for some region R,  that R C_ ext $2, then 
the expression in R may be simplified to Sl  I"1 * 0 - 0, where 0 
denotes the empty set. If  instead R ~ int $2, the expression reduces 
to $1 I"1 * UR - Si ,  where /JR is the universal set restricted to R. In 

either ease, we can perform the simplification without any knowledge 
of the structure in R of St ,  which could be an arbitrarily complex 
sub-expression on arbitrarily complex objects. Analogous cases exist 
for the other operations (Figure SIMPLIFY).  This has been called 
"pruning" in the context of CSG trees. 

To utilize this technique we must partition the space into regions such 
that at least one operand is homogeneous in each region. That is, 
given the expression S i op $2 defined on some space, one must find a 
partitioning of that space such that for each region Ri of the partition- 

op 

U* 

N, 

left operand right operand 
S in 
S out 
in S 

out S 
S in 
S out 
in S 

out S 
S in 
S out 
in S 

out S 

result 
in 
S 
in 
S 
S 

out 
S 

out 
out 
S 

out 

Figure SIMPLIFY. Expression simplification rules. S is an arbitrary regular 
set. 

ing, Ri c i n t  S) or R~ c_ ext S ) , j  ~ 1 or 2. For an expression o f n  
operands, this property may need to hold in each Ri for up to n - I  of 
the operands, depending on the expression. This technique appears in 
a number of places, e.g. [Wood82] [Tilo84], and seems fundamental 
to the problem, We use a BSP tree to partition space to achieve these 
conditions. 

4.1 BSP Tree < o p >  B-rep ---' BSP Tree 

Given a BSP tree 7 ~ representing a polyhedron T, and a B-rep /~ 
representing a polyhedron B, we wish to evaluate T o p  B or B o p  T,  
where op is a regularized set operation. In the case of the difference 
operator S~ - *  $2, we choose to complement the right operand and 
evaluate the equivalent Sl  A *  ~ *  $2 3. Now, the approach is to 

perform the set operations on open sets only, since these are closed 
under standard (non-regularized) union and intersection. If the boun- 
dary of the result is needed, it is explicitly computed (see section 4.3 
below). We will need to classify T and B with respect to each other. 
This is achieved by discovering parts of one that lie in the interior or 
exterior of the other. We refer parenthetically to Figure SET-OP, 
which illustrates T - *  B. 

We begin by inserting collectively into T all of the faces of/~.  As the 
faces filter down into T we can discover which if any of the subtrees of 

lie entirely in int B or ext B. When at some node v, no part of/Y 
is found to lie on one side of Hv, say, the left side, then R (v.left) must 
be homogeneous with respect to B (e.g., x.right and z.right in the 
figure), as explained in section 3. A general method for determining 
whether the region is in int B or ext B is given below in Section 4.5. 
When this occurs, the subtree rooted at v.left is either left untouched, 
or is replaced by a leaf, depending upon the simplification rules (in our 
example, both x.right and z.right are not modified). If it is also the 
ease that no face of B is coincident with Hv, then the sub-hyperplane 
of v has also been classified with respect to B. The faces of v are kept 
or deleted according to the same simplification rules (e.g, x's sub- 
hyperplane is in ext B and its face is kept). Deletion of v may also be 
possible (see section 4.4). 

The insertion process results in/~ being distributed among some subset 
of the subspaces of T, i.e. cells or sub-hyperplanes. The reaching of a 
leaf l by some subset of the boundary, Bt, means that Bt has been 
classified with respect to T (e.g. the faces in y.right and z.left in (3)). 
The operation can then be evaluated since we have a region in which 
one operand, T, is homogeneous. The result is either T 's  value (e.g. 
y.right) or B's value (e.g.z.left) in the region represented by the leaf, 
depending upon the particular operation and the value of the leaf, as 
given in Figure SIMPLIFY.  If the value is T's, then the faces of/Yi 

it is possible to gain a little in efficiency by performing the ¢omplementation as part 
of the evaluation so that only the parts included in the result are actually 
complemented. 
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(1) Initial geometry. 

/ ~z \ 

(4) Resulting partitioning. 
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/ \  / \  
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/ \  / \  
z out z out i~ * (s's,sr,rr') 
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in out in I~ * (r'q,qp,ps') out A * out 

(2) Initial representations. (3) BSP tree after classifying (qp,rq,sr,ps). 
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X O U t  
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(5) Final BSPtree .  

Figure S E T - O P .  B S P  tree - *  B-rep ~ B S P  tree. 

\ 
O U t  

are discarded (as in y.right); otherwise ]b is "extended" by replacing 
the leaf with a subtree built from the faces of/~t (as in z.left). This 

can be performed by the procedure Build-BSPT, given earlier. Thus, 
the cell is "refined" to reflect B's  value in the region. The tree now 
represents the desired set. We refer to this algorithm as the incremen- 
tal set-op evaluation algorithm because it can be used to create a 
polyhedron by a series of "incremental" modifications to an initial 
polyhedron. The algorithm is summarized in Figure I N C R E M E N -  

TAL SET-OP. 

4.2 CSG on B-reps ~ B S P  Tree  

A Constructive Solid Geometry representation (CSG) of a set S is a 
binary tree in which the internal nodes represent (regularized) set 

operations and leaves are instanced primitives (such as blocks, cones, 

etc.) [Requ80]. One can classify some arbitrary set s with respect to 
S by first classifying s with respect to each primitive, and then com- 

bining the classifications according to the set theoretic expression 
represented by the CSG tree [TiloS0][Roth82]. An alternative is to 

convert the CSG representation to a more explicit form, such as a B- 

rep or BSP tree, and classify with respect to that representation. The 
algorithm we now present provides this latter approach. 

We define a CSG evaluation problem 71" as a pair (7, R), where 7 is a 

CSG tree with polyhedral primitives represented as B-reps or as trivial 
BSP trees (representing o or U),  and where R is a convex region of 
d-space on which 7" is defined. The algorithm returns a BSP tree 

which represents the same set in R as r .  Start ing with the problem 71" 
= (T, R), the algorithm chooses a hyperplane H to partition the prob- 

lem into two sub-problems, 7 f l e f t  = (Tleft, R (7 H - ) ,  and 

7r,ight = (7"rigm, R ('] H+).  The root of the tree returned has H as 

its partitioning hyperplane, and its left and right subtrees are the 
results of the recursive evaluation of "Wleft and "n'right, respectively. The 

recursion is terminated when the current CSG tree reduces to a trivial 
BSP tree (a cell). 

The algorithm is quite similar to Build-BSPT of section 3, with one 

important difference: rather than having just a simple list of faces to 
partition, we have a CSG tree with faces at its leaves. Figure CSG- 

EVALUTATION describes the algorithm. As before, a hyperplane H 
is chosen at each stage that embeds a face using a heuristic (Section 
5.1). Two copies of the CSG tree are generated and modified to 
represent the set in each of the two halfspaces of H.  This entails for 

i f  op = - *  then 
B :-- Negate  B-rep( B ) 
o p : =  ~ *  

procedure Ineremental_Set_op 
( op : set_operation ; v : BSPTreeNode  ; 

B : set of  Face ) returns BSPTreeNode  
if v is a leaf  then 

case  op of  
U * : case  v.value of  

in : return v 
out : return Bui ld_BSPT( B ) 

N * : case  v.value of  
in : return Build B S P T (  B ) 
out : return v 

else 
<B_le f t ,  B_right, B_coincident> :-- partition B with H v 
if B left has no faces then 

status : =  Tes t_ in /out (H, ,  B coincident, B_right) 
ease  op of  

U * : case status o f  
in : discard B S P T (  v.left ) 

v.left : -  new "in" leaf  
out : do nothing 

A * : case status o f  
in : do nothing 
out : d iscard_BSPT(  v.left ) 

v.left :m new "out" leaf 
else 

v.left : =  |neremental_Set._op( op, v.left, B_left ) 

if B_right has no faces then 
(* similar to above *) 

else 
v.right : z lncremental_Set. .op(np, v.right, B__right) 

return v 

end lncremental_Set_op ; 

Figure I N C R E M E N T A L  S E T - O P .  Psuedo code for the incremental set 
evaluation algorithm. 

each primitive replacing the faces of that primitive in the respective 
CSG trees with the subset of the faces that  lies in each halfspace. 

157 



~ SIGGRAPH '87, Anaheim, July 27-31, 1987 
I ~ U ~ l  

Faces coincident with H are retained at the new node. Detection of 
homogeneous regions allows CSG tree simplification using the rules in 
Figure SIMPLIFY.  If the CSG tree is reduced to, in effect, a single 
value (in/out), the problem in that region has been solved and is 
represented by a cell of the BSP tree. The entire problem, then, is 
solved through the discovery/creation of regions which are homogene- 
ous with respect to the defined set, where each region is represented by 
a different cell of the resulting BSP tree. 

procedure Evaluate_CSG ( r : CSG Tree  ) returns B S P T r e e  

choose  a face  f o f  a primitive of  r 
v : =  new BSPTreeNode ;  Hv := H f  
• T l e f t  * ~.right > l_.m. Split_CSG ( r, Hv ) 

fief, : J  Simplify_CSG ( rleft ) 
if  rteft represents O then 

v.left : = new "out" leaf  

else i f  rteft represents  U then 
v.left : =  new "in" leaf  

else 
v.left : =  Evaluate_CSG ( rte/t ) 

(* s imi lar  code for z~igh z *) 

return v 
end; (* Evaluate_CSG *) 

procedure Spl i t_CSG ( r : CSGTree;  H : plane_equation ) 
returns < CSGTree ,  CSG Tree  > 

i f  r is not a primitive then 

rteft :=  copy ( r.root ) 
r,ight :=  copy ( r .root  ) 
<rtefl . left  , r~ight.left> : =  Spl i t_CSG ( r. left ,  H ) 
<rteft .r ight  , fright.right> : = Spl i t_CSG ( r .right,  H ) 

else 
< r l e f i ,  f r ight  , rcoincide m > : = partition r with H 
if  r l e f t  = 0 then 

T~ft = Test in/out ( H, rcoinciaent, Tright ) 
else i f  7right ~ 0 then 

Trlght ~ Test_in/out ( H, Tcoincident , Tlef t  ) 

Add Tcoincident to V'S face  lists 

return <fief t, "[right :> 

end; (* Spl i t_CSG *) 

Figure CSG-EVALUATION. 
tree to a B S P  tree. 

Algor i thm for converting from a CSG 

4.3 Boundaries  

The two algorithms described above produce, in effect, a generic BSP 
tree which is sufficient for point classification and ray-tracing. While 
certain faces were retained at internal nodes, these no longer 
correspond necessarily to the boundary of the set S represented by the 
tree S .  Since B-reps are useful for rendering via polygon tiling, and 
the BSP tree can induce a priority ordering on the faces, we may wish 
to generate the boundary faces of S .  This requires that for each node 
v of ,~ ,  we find and store at v, bd S N S H p ( v )  (where S H p ( v )  is 
the sub-hyperplane of v). There are two alternatives. One is to dis- 
card the old faces entirely and generate the boundary faces directly 
from the generic BSP tree using a technique described in [Thib87]. 
The second, which- we will describe here, constructs the new faces from 
the faces of the operands. 

The boundary of the result of any set operation is known to be a subset 
of the boundaries of the operands. Now, since bd S is known to lie 
entirely within the sub-hyperplanes of S ,  only the parts of the original 

faces which lie in these sub-hyperplanes can possibly be in bd S .  
These two facts imply that the faces retained at S ' s  nodes form a 

superset of bd S ,  i.e. their union contains bd S ,  and the discarded 
faces do not contain any subset of bd S .  It also immediately follows 
that for a given node v, any part of bd S lying in the S H p  (v) must 
be a contained in the region covered by the faces retained at v. How- 
ever, parts of these faces may lie in either int S or ext S .  To find the 
on parts of these faces, we can insert them into the subtrees of v, 
analogous to the technique used in point classification for points lying 
in sub-hyperplanes. This produces a set of new faces, a subset of 
which form bd S I") SHp(v) ,  and this subset is retained at v (as 

opposed to extending the tree as in sections 3 and 4.1). 

4.3.1 Class i fy ing  Faces .  Consider for the moment the case where 
v.right is a cell with value out ,  as at node y in Figure SET-OP. Then 
the boundary contained in the S H p ( v )  is precisely the points lying 
between this out-cell and those in-cells in v.left whose closure intersects 
Hr. Moreover, the orientation of the boundary faces must be that of 
Hv, since they are to point to the exterior, which by construction lies in 
v.right. Therefore, faces in the opposite-face list cannot be in bd S .  
Now, if we classify the same-faces by inserting them into v.left, the 
resldting faces which are classified as in with respect to v.left, i.e those 
which reach in-cells, must lie in bd S .  Those in out-cells would be 
between two out-cells and thus known to lie in ext S .  These can be 
discarded. As an example, in Figure SET-O, a face of the original 
tree at node y ,  when inserted into y.lef t  would be split into three 
pieces, two of which are in and the third (middle piece) is out .  

Now, to extend this for an arbitrary v.right, we first take the in-faces 

from the v.left insertion/classification above and insert/classify then 
with respect to v.right. The faces resulting from this insertion that are 
classified as out are then known to lie between an in-cell and an out- 
cell, and therefore in bd S .  Now, the same process applied to the 
opposite-faces, but with the insertion sequence reversed (v.right then 
v.left), produces faces in bd S whose orientation is opposite of H~. 

In the case of the incremental algorithm, we can exploit the fact that a 
single set operation is being evaluated, and use its semantics to avoid 
inserting faces into both subtrees. Consider union. We know that the 
neighborhood [n the back-halfspace of a face of either operand is in the 
interior of the result. Therefore, we know a priori that same-faces 
inserted into v.left will all land in in-cells, and similarly for opposite- 
faces inserted into v.right. Thus, each face needs only to be classified 
with respect to one subtree: same-faces with respect to v.right, and 
opposite-faces with respect to v.left. The resulting faces that land in 
out-cells lie on the boundary, since the other side is known to be in- 
cells. For intersection, a similar analysis indicates that same-faces 
should be inserted into v.left, opposite-faces into v.right, and that 
resulting faces lying in in-cells should be kept. 

While the above technique guarantees that the union of the remaining 
faces is exactly bd S ,  it does not guarantee that the set of faces at 
each node are disjoint. If the faces are given the same attributes, such 
as color, this redundancy will not affect renderings of the object, other 
than to possibly increase time and space requirements. However, this 
redundancy can be eliminated by merging the faces, i.e. by forming for 
each node independently the union of the same-faces and separately 
the union of the opposite-faces. 

4.3.2 Face  Merg ing .  Merging of faces can be performed by the CSG 
evaluation algorithm in the dimension of the faces, optimizing for the 
fact that there is only one type of operator: union. Conceptually, we 
have a CSG tree representing f t  I,.,I f 2  U " " " U f , ,  for n faces. 
The result is a BSP tree, in (d-1)-space,  where the ( d - l )  value of 
"in" corresponds to the d-value of "on", and similarly "out" corresponds 
to "not-on". Faces lying in a hyperplane H are orthogonally projected 
into a coordinate hypcrplane by dropping the coordinate corresponding 
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to the largest coordinate of H ' s  normal. The tree building process 
proceeds a s  before, but in the lower dimension. The recursion ter- 
minates when regions are discovered that are either completely covered 
by some face or contain no faces. 

Let us consider the case where d = 3. If convex polygons are the 
desired output, it is relatively straightforward to maintain a vertex-list 
representation of the regions of the 2D tree. All in-regions yield 
polygons whose vertices are projected back into H .  Now, for concave 
polygons, we must find the (d-2) boundary of the in-regions. This 
means that finding the 2D boundary of a 3D set requires recursing in 
dimension and finding the 1D boundary of 2D set and subsequently the 
0D boundaries of 1D sets. Thus, to perform the complete boundary 
evaluation requires that we apply our algorithm recursively in dimen- 
sion. The recursion forms 1D BSP trees for each internal node of a 
2D BSP tree. The in-cells of these trees lie on polygon edges. In this 
I D-space, hypcrplanes are forced to the form [ 1 - x  ]. Vertices lie 
on these hyperplanes and have value x ,  and the left subtree of a node 
contains values < x while the right subtree values are > x ,  i.e. they 
are binary search trees. To find the minimum boundary of these 1D 
in-regions, i.e. the pairs of vertices bounding each edge, we can 
traverse each 1D tree using the procedure in Figure G E N E R A T E -  
EDGES.  The vertices are projected back from tD to 2D which are 
then projected back into H defined in 3D. This then produces a 
merged set of edges bounding the on-regions (with respect to the 3D 
polyhedron) lying in a given sub-hyperplane 4. 

Global variables 
vl ,v2 : scalar,  last value : { in,out } : . -  out 
edge_list : LIST OF ( vl,v2 ) 

G e n e r a t e E d g e s (  root, [ 1 - - o o l  ) 

procedure Generate_Edges(  v : BSPTreeNode ,  
rain : 1D-Hyperplane  ) 

i f  v = leaf  then 
case ( last_value, v.value ) 

( out,in ) - >  v l  :ffi min.x 
( in,out ) - >  v2 :ffi min.x 

edge_list + ffi NewEdge (  v l ,  v2 ) 
last value : -  v.value 

else 
Generate_Edges(  v.left, min ) 
Generate_Edges(  v.right, Hv ) 

end Generate_Edges 

Figure G E N E R A T E - E D G E S  

Another alternative for boundary generation from the CSG evalnator, 
described in [Thib87], uses a technique where each same-face is 
inserted into v.left and a copy, but with orientation reversed, is inserted 
into v.right. The complementary operation is performed for the 
opposite-faces. The resulting in-cell faces are retained and merged 
together as above, but with the following "glue" operator in place of 
union: 

(same,  same)  - >  same 
(same,  opposite) - >  not-on 
(opposite,  s a m e ) - >  not-on 
(opposite,  opposite) - >  opposite 

The I D boundaries of same and opposite regions are constructed 
independently. This kind of operation has appeared elsewhere, e.g. 

4. R e p r e s e m i n g  a set of a rb i t r a ry  non-over lapping polygons by a set of  edges  is 
sufficient for m a n y  polygon process ing a lgor i thms .  

[Putn86], to "regularize" the set, 

4.4 BSP Tree Reduction 

Once a BSP tree has been constructed as the result of the evaluation of 
set operations, it may be possible to reduce the tree by eliminating cer- 
tain nodes without changing the represented set. We identify two 
cases in which this reduction is possible. The first case occurs when 
both subtrees of a node v are cells with identical values (Node z in 
Figure REDUCE),  Since R (v) is homogeneous, the subtree rooted at 
v can be replaced by a cell with the same vatue. Note that no boun- 
dary faces could lie in the sub-hyperplane of such a node, This case 
arises naturally from expression simplification during which a formerly 
non-homogeneous region is simplified to a homogeneous one, and is 
analogous to the "condensation" of quad/oct-trees. It can be performed 
as part of the tree construction. 

We may also remove a node that has as one child a cell and, in addi- 
tion, has no part of the boundary in its sub-hyperplane (node u in Fig- 
ure REDUCE). This means that all cells in the other subtree bounded 
by this node's hyperplane have the same value as the cell. Since the 
sub-hyperplane does not contribute to the differentiation of space, the 
tree rooted at this node can be replaced by the node's non-trivial sub- 
tree (Node w). This reduction can be performed during the phase that 
generates the boundary faces. (With the incremental algorithm, this 
can be detected and effected during set-op evaluation.) 

u 

w out 
/ \  

U x o u t  
/ \  

out 
\ \ 

Z o u t  
. / \  
In In  

Figure R E D U C E .  Nodes  u and z can be eliminated. 

4.5 The In/Out Test  

In all three of our algorithms that produce BSP tree representations of 
polyhedra, we discover regions that do not contain any faces of a 
polyhedron B represented by a B-rep B. In these cases, we must 
determine whether that region lies in int B or ext B.  In procedure 
Build_BSP, we saw that we could use the normal of a face, coincident 
with H ,  to answer this question. However, in the set operation algo- 
rithms, no such face may exist. We must then decide the status of this 
region based upon the subset of bd B lying on the non-homogeneous 
side of H .  We solve this for dimensions 1, 2 and 3. 

Let By = / ~  f') R ( v ) .  (Note that since R ( v )  is open, 
0 bd R ( v )  is not included in By). We assume, without loss of 

generality, that B~ lies entirely in H~ +, and therefore in R(v.right).  
We are then interested in determining the status of R (v.left) with 
respect to B. In the case where B O R (v) is convex, this is rela- 
tively simple. We can test some point lying in SHp (v) for inclusion in 
the back half-spaces of all faces o f / ~ .  If the point is "behind" all of 
these faces, then R (v.left) C int B,  otherwise R(v. lef t )  c ext B.  
Such a point can be easily produced if each sub-hyperplane embeds 
some face: we use the centroid of three non-collinear vertices of this 
face. 

We now address the problem for (sets of) arbitrary polyhedra. One 
alternative is the ray casting test [Laid86]. This method would inter- 
sect a ray emanating from a point.on the sub-hyperplane with /~ to 
find the closest face, from whose orientation the classification can be 
obtained. If the closest intersection point lies on more than one face, 
the process is repeated with a randomly perturbed ray. We have, 
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however, discovered a simpler method which uses the closest vertex b 
of/Y~, to H.  This b can be found trivially during the partitioning of 
/Y~ by Hr. In the following, le tp  be a point in S H p ( v ) .  

In ID, the problem is solved exactly as in Build-BSPT, i.e from the 
orientation of the single face (a point). For 2D, the problem is illus- 
trated in Figure 2D-IN/OUT. Vertex b is either in bd R ( v )  or in 
int R ( v ) .  If b lies in b d R ( v ) ,  then there is a single edge e in Bv 
incident with b. (A second edge could only lie in b d R ( v )  or 
ext R ( v ) ) .  I f p  lies in He +, then R(v.left)  lies in ext B.  Otherwise, 
R(v.left)  is in int B.  Now, if b is in int R ( v ) ,  b is incident with two 
edges, el and e2. The region R(v.left)  is in ext B if el and e2 lie in 
each other's back halfspace, i.e., if el c H~- and e2 C HeT. This 

means that b is a point of "local convexity" of B. Otherwise R (v.left) 
is in int B (and b is a point of "local concavity"). 

t P " 

~ L %"i 3/ 
t_ . . . . . . . .  . "  "R(v) 

(a) closest vertex in bdR (v). 

t t "  . . . . . . . . . .  . .... i 

t t / / 

", L ~  2 )' 

', ."Riv, 
(b) closest vertex in 'int'R (v). 

Figure 2D-IN/OUT.  

In 3D, the situation is somewhat similar: either b lies in bd R ( v )  and 
is not shared by any other face o f / ~ ,  or b is shared by more than one 
face o f / ~  (and may lie in either bd R (v) or int R (v)). The test for 
the first case is the same as above: p is tested against the hyperplane 
of the single face containing b. When b is shared by more than one 
face of/~v, we select the edge which forms the smallest angle with the 
plane H~ (think of b lying on H~), In the neighborhood of b, this is 
the closest edge o f / ~  to H~ (Figure 3D-IN/OUT).  If f l  and f 2  are 
the faces that share this edge, then R (v.left) is in ext B if, in a local 
region of b, f l  and f 2  lie in each other's back halfspace; otherwise, 
R (v.left) lies in int B. To determine this we first find a vertex of f l  
adjacent (connected by an edge) to b but not lying in fz-  The loca- 
tion with respect to the plane of f 2  of this vertex provides the same 
answer as in the 2D case above. If the faces are convex, any vertex of 
f l not lying in f 2  will do. If there is a tie for the closest vertex, we 
can choose the one that allows the simplest test. 

~ - - - ~ . ~ - ~ -  1 =  - 2  - - -  ~ - ~  - - - ~  ~ - I  

' 
I I I I t I I 

' '  I I ' '  
I I I I I I 
q I I I I 
I I I I I 
I I I I I I 

I I I I I 

- ~ --+-) ~- fl .,t- . . . .  .[ _ -/L L : .) 

_ _ . ~ _ _ _ _ ' _ J / _ _ - .  ~.-- . . . . . . . .  _W___:"  

(a) vertex b on only one face. (b) vertex b on more than one face. 

Figure 3D-IN/OUT.  

5. Experience  

5.1 Selection of  Partitioning Hyperplanes 

While a thorough discussion of methods by which to select partitioning 
hyperplanes is beyond the scope of this paper, we will at least describe 
the primary ones we have been using. The two principal properties of 
BSP trees that we are wanting to optimize are size and balance. 

Because finding the optimal is considered to be computationally hard, 
heuristics are employed. Most of our work has been with heuristics 
that select a hyperplane from among those that embed faces. For a set 
of faces, we define the candidate set to be those faces that are to be 
considered for generating partitioning hyperplanes. The test set con- 
sists of the faces against which each candidate hyperplane is tested, 
with possible outcomes being "in front oP', "in back of", and "inter- 
sected by". The heuristic is a function of the number of outcomes of 
each type that occurred when a candidate was tested against the test 
set. The candidate chosen is that member of the candidate set that 
maximizes the heuristic. We investigated three heuristic functions: 

Heurl (front,back,split) ~ ( - ] b a c k - f r o n t [ )  -w~gi t  * split 
Heur2 (front,back,split) - (front * back) - wspm * split 
Heur 3 (front,back,split) ~ front - w~ptit * split 

The weight wsptit allows "tuning" of the heuristics. The reason for 
applying a negative weight to intersected candidates is that splitting of 
faces tends to increase tree size and total computation time. The first 
two heuristics try to balance the number of faces on each side of the 
candidate. The third is motivated by CSG trees with convex primitives 
and attempts to maximize the number of faces in the exterior of some 
primitive. This can facilitate CSG tree simplification, since in one of 
the two subspaces, the value of the primitive will be out. 

5.2 Implementation of the CSG evaluation algorithm 

The CSG evaluation algorithm has been implemented in a dialect of 
Pascal running under Unix BSD 4.3. The CSG tree is described in a 
simple language of our design, translated using lex and yacc. Statis- 
tics obtained for various test objects are given in Figure STATS. 
Objects "stand" and "holed head" are depicted in Figure RAY- 
TRACING.  In Figure CLUTCHPLATE, the edges (highlighted) 
reveal the spatial partitioning of that object. Tests were run on a 
VAX 8650. For each heuristic, wwm -- 8, the candidate set consisted 
of 5 polygons chosen at random from each primitive in the current 
sub-problem, and the test set consisted of all polygons in the sub- 
problem. Early experience with various candidate set sizes shows that 
heuristics Heurl and Heur3 are comparable. Heur2 produces trees 
with a larger number of nodes, but with less CPU time than is 
required by the other heuristics for the same objects. 

5.3 Implementation of the Incremental Algorithm 

We have implemented the algorithm for incremental set operations in 
C on a Silicon Graphics IRIS workstation. The user modifies a "work 
piece", represented by a BSP tree, with a "tool", represented by a B- 
rep. The user can interactively control the view and the tool's position. 
Moving the tool results in a temporary union of the current work piece 
with the tool at its current position. Visibility is accomplished by 
transmitting the polygons in back to front order, using the visibility 
priority ordering produced from the BSP tree. The union we use for 
this is a "lazy" union because we do not re-evaluate boundary polygons 
in nodes of the resulting tree. We can do this because the visible sur- 
face of two objects that interpenetrate is the same as the visible sur- 
face of their union. Re-evaluation would only serve to eliminate invisi- 
ble faces in the interior or overlapping faces on the boundary. Our 
impression is that the time required to draw the extra polygons is less 
than that needed to update the boundaries. In addition, subtrees lying 
inside the tool are saved and former cells that were refined by the 
tool's faces are noted. Thus to restore the original tree for use in the 
next frame requires reinstating the "removed" subtrees and cells, and 
removing any of the tool's faces lying in internal nodes of the tree. 
Finally, once the tool is positioned, the user chooses a set operation and 
the BSP tree is modified to reflect the result. 

The initial work piece is obtained by either converting some B-rep to a 
BSP tree or using the result of the CSG evaluator. We have restricted 
the tools to be convex polyhedra so that we can take advantage of the 
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number of number of heuristic cpu tree size tree height number of 
object primitives polygons used (seconds) (nodes) polygons 

1 8.3 368 43 353 
clutchplate 8 158 2 7.2 408 27 362 

3 8.3 369 47 353 
1 41.9 713 31 1781 

stand 31 623 2 41.1 814 31 1825 
3 152.9 896 93 1850 
1 30.6 1536 104 1982 

holed head 3 955 2 24,5 1811 61 2167 
3 32.8 1532 90 2067 

Figure STATS. Statistics for some test cases. 

simpler algorithms for tree building and in/out testing. We have not 
found this to be an unnatural limitation for the user. Also, the IRIS 
workstation requires polygons to be convex. In forming the' boundary 
during set operations, we take advantage of the convex decomposition 
generated by the BSP tree to provide us with convex polygons. 

6. Concluding C o m m e n t s  

6.1 Comparison to Alternative Approaches 

Space limitations prevent any but a limited discussion of the relation- 
ship of our work to others. The octree [Meag82] is similar in ways to 
the BSP tree. Both are tree structures that recursively subdivides 
space and assigns values to leaves, and both are dimension- 
independent. The most obvious difference is that octrees require the 
partitioning to be axis-aligned and the subdivision to be uniform. Of 
course, any partitioning of space by an octree can be modeled by a 
BSP tree 5. The simplicity of octrees is attractive, and this can lead to 
certain advantages. But, for representation of polyhedra, the octree in 
general provides only an approximation, and it is typically a very ver- 
bose one. However, work described in [Carl85] [Aya185] attempts to 
addresses these problems. While the verbosity is reduced, it still 
remains a problem. Set operations (in [Aya185] and described for 2D 
only) require identifying and handling a number of cases, an aspect 
that tends to complicate implementations and makes extension to 
higher dimensions difficult. More importantly, axis-aligned partition- 
ing schemes do not transform. To transform an octree it must be 
rebuilt. BSP trees do transform: simply apply the transformation to 
each hyperplane (the inverse of what would be applied to points). 
Also, we expect the generality of orientation to lead to smaller 
representations. 

In B-rep algorithms, e.g. [Mant83] [Requ85] [Laid861 [Putn861, the 
geometric search structure, the set operations, and the visible surface 
determination are independent. In the BSP tree, they are all unified in 
a single structure (also true of octrees). While boundary representa- 
tions transform, the search structures are typically axis-aligned. With 
one exception [Putn86], the algorithms for set operations are not 
dimension-independent and are somewhat complex with, once again, 
considerable case analysis. The principal "case analysis" per se for the 
BSP tree is the partitioning of a face by a hyperplane. On the other 
hand, B-reps are typically more concise (although not always). 

6.2 Future Work 

Other operations that we have examined include the calculation of 
metric properties such as volume, surface area, center of mass, etc. 
(see [Thib87]). We have also made a potentially important step by 

5. To make the cost of determining the location of a point in a BSP tree more 
comparable to an octree, we use plane-equation-type -- ( x-axis, y-axis, z-axis, 
arbitrary ) and optimize when not "arbitrary". 

devising a closed set theoretic (boolean) algebra on BSP trees, thus 
dispensing with B-reps per se. In addition, the original ray-tracing 
techniques have been extended considerably, now exploiting non-linear 
hyperplanes, Utilization of non-linear hyperplanes is also possible with 
the fundamental techniques presented in this paper. However, the sim- 
plicity of linear computations would be lost in doing so. Nonetheless, 
we intend to explore this option. Heuristics are another area requiring 
greater study. All partitioning hyperplanes do not need to embed 
faces. One technique we have begun investigating is the use of a 
"median cut" algorithm similar to that used to build k-d trees [Bent79]. 
This can result in more well-balanced trees, especially for convex 
regions bounded by many faces. 

6.3 Conclusions 

A new representation for something as fundamental as polyhedra intro- 
duces a new "algorithm space" to explore. Divide-and-conquer algo- 
rithms are often simple and efficient and we believe this is reflected in 
the BSP tree algorithms. Also, the dimension independent aspect 
allowed a solution to the boundary problem without introducing a 
different methodology. The unified framework provided for geometric 
searching, set operations, and visible surface rendering reduces the con- 
ceptual complexity as well as the complexity of implementations. 

The representation can be viewed as something of a cross between 
octrees and boundary representations, it has the unifying quality of 
octrees, but is not as simple. It has the exactness, transformability and 
conciseness of boundary representations, although not generally as 

concise. In fact, one might view the greater verbosity as the cost of 
the unity, something which must be weighed against the other gains. 
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Figure RAY-TRACING. Two objects defined with BSP trees and ren- 
dered by ray-tracing. 

Figure CLUTCHPLATE. Edges reveal the partitioning. 
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