
~ Computer Graphics, Volume 24, Number 4, August 1990

Merging BSP Trees Yields Polyhedral Set Operations

A b s t r a c t

Bruce Naylor*, John Amanatidest and William Thibault $

*AT& T Bell Laboratories

tYork University

~:California State University at Hayward

BSP trees have been shown to provide an effective repre-
sentation of polyhedra through the use of spatial subdivision,
and are an alternative to the topologically based b-reps. While
bsp tree algorithms are known for a number of important opera-
tions, such as rendering, no previous work on bsp trees has
provided the capability o f performing boolean set operations
between two objects represented by bsp trees, i.e. there has
been no closed boolean algebra when using bsp trees. This pa-
per presents the algorithms required to perform such opera-
tions. In doing so, a distinction is made between the semantics
of polyhedra and the more fundamental mechanism of spatial
partitioning. Given a partitioning of a space, a particular se-
mantics is induced on the space by associating attributes re-
quired by the desired semantics with the cells of the partition-
ing. So, for example, polyhedra are obtained simply by associ-
ating a boolean attribute with each cell. Set operations on
polyhedra are then constructed on top of the operation of merg-
ing spatial part i t ionings. We present then the algorithm for
merging two bsp trees independent of any attributes/semantics,
and then follow this by the additional algorithmic considera-
tions needed to provide set operations on polyhedra. The result
is a simple and numerically robust algorithm for set opera-
tions.

I n t r o d u c t i o n

Methods for representing geometric objects is an issue of con-
siderable importance to discipl ines dealing with geometric
computation. Several different representations, such as bound-
ary-representations (b-reps), octrees, and esg trees, are cur-
rently in use, and a number of new approaches are being ex-
plored by various researchers. As in all computation, the data
representat ion/structure determines the algori thms that are
needed to provide the operations associated with any semantic
domain. And it is the efficiency and simplicity of the algo-
rithms operating on the data structures that determines the at-
tractiveness of a particular representation.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

Constructive solid geometry introduced the explicit use of
the paradigm of constructing complex objects from combina-
tions of other usually simpler objects, This methodology is
built upon the mathematies of set theoretic expressions. These
expressions are analogous to parenthesized boolean expres-
sions, but the variables are instead subsets of a Euclidean D-di-
mensional space and the operations include, in addition to the
analogous regularized boolean set operations, affine transfor-
mations. Instancing, i.e. the utilization of named sub-expres-
sions, is also a part of this method.

These expressions define a value and they can, at least in
principal, be evaluated to produce this value. For example, ray-
casting evaluates the expressions in a 1D sub-domain of the
typically 3D domain, and so solves a simpler problem: classify
a line with respect to the expression. When the operands are re-
stricted to polyhedra and are represented by b-reps, then any
number of algorithms are known for evaluating such an expres-
sion (see for example [Mantyla 88] or [Hoffman 89]).

The methodology underlying b-reps is that of the direct rep-
resentation of the topology of a polyhedral surface/boundary.
The topological approach requires the decomposit ion of a D-
space polytope into connected components of all dimensions

d, 0 _< d _< D, and explicitly encodes the cormeetivity/incidence
among these components . Thus, the methodology dist in-

guishes for every d, 0 < d <_ D, affine subspaces containing
sets of d-manifolds (shells), preferably with their relative con-
tainment (which shells are inside which other shells), along
with their connected set of d-1 dimensional boundary elements
and the connectivity of these to other elements outside of their
affine subspace, and so on recursively in dimension.

B-reps, while widely used, possess a number of inherent dif-
ficulties in terms of their representational power. The reliance
on the concept of manifolds is at odds with the need for permit-
ting non-manifold boundaries, i.e. the presence of regions on
the boundary whose neighborhood is not homeomorphie to an
g-ball of some affine subspace. (However, this problem is fix-
able.) A second is the inability to represent sets whose bound-
ary is unbounded, such as a linear halfspace.

On the algorithmic side, performing set operations with b-
reps requires explicit detection of the co-incidence of all C(D,
2) combinations of the variously dimensioned elements (e.g.
face-face, face-edge, edge-vertex) along with some appropriate
action for each. And the fundamental importance of incidence
to the topological methodology exacerbates the already diffi-
cult problem of numerical robustness. Additionally, efficiency
considerations necessitate some kind of spatial search struc-
ture, one that is extrinsic to the representation and is typically
an axis-aligned spatial decomposition. Therefore, it does not

© 1990 ACM-0- 89791-344-2/90/008/0115 $00.75 115

O SIGGRAPH '90, Dallas, August 6-10, 1990

transform with the representation and so must be reconstructed
after each transformation.

An alternative that has been evolving throughout the decade
of the 80's is the binary space partitioning tree. The fundamen-
tal methodology underlying bsp trees is spatial partitioning.
Hyperplanes are used to recursively subdivide D-space to create
a disjoint set of D-dimensional cells. Each cell is then desig-
nated as either in the interior of the set or in the exterior. The
boundary of the set need not be represented explicitly as it is
derivable from the cells. The representational power of linear
bsp trees is the class of linear sets 1, which includes l inear
polytopes. The methodology of spatial part i t ioning ignores
all topological properties of the set, and so bsp tree algorithms
treat all topologically distinct sets identically, nor is any dis-
tinction made between convex and non-convex sets. Thus the
entire representatibnal domain is treated uniformly, providing
a considerable improvement in the simplici ty of the algo-
rithms. In addition, the spatial search structure is intrinsic to
the representation and so transforms with it.

I. BSP Trees

The most intuitive way to understand bsp trees is through the
process that constructs them, and so we begin our introduction
to bsp trees with an example. Figure 1 illustrates the construc-
tion of a bsp tree. One begins with a region of space r, chooses
some hyperplane h that intersects r, and then uses h to induce a

binary partitioning on r that yields two new regions: r.child" =
r n h- and r.child + = r n h +, where h- and h + are the negative
and positive open halfspaces of h respectively. Each of these
unpartitioned children can in turn be partitioned, and so on, to
produce a binary tree of regions.

r O

Initial tree
Initial region First binary New tree

partitioning

s 3 D \

, , C 3 - - E 6

Spatial partitioning Binary tree

Figure 1 Constructing a bsp tree

A bsp tree is then a hierarchical set of regions of a D-dimen-
sion Euclidean space with a relation of parent-child defined on

1 We have only studied bsp trees of finite size (as in number of
nodes); but the concept can be extended to trees that are
eountably infinite.

116

the set corresponding to "child formed by a binary partitioning
of parent". The graph of the relation on the set is a binary tree.
The process that builds bsp trees uses a single local operator,
viz. binary partitioning, which provides the construction:
(region, hyperplane) -> (region-, region +, binary partitioner).
A binary partitioner of a d-region R is any d-1 subset of R

which partitions R into two disjoint subsets, R- and R +, such
that any path between two points, p- ~ R- and p+ E R +, must
intersect the binary partitioner. Recursively applying this op-
erator produces a bsp tree.

While the bsp tree is a geometric entity whereas its binary
tree is combinatorial, the language of binary trees is often use-
ful for describing certain aspects of the bsp tree. By definition,
there is an isomorphism between bsp tree regions and binary
tree nodes, and we denote the region of a node V as V.region
and conversely the node of a region R as R.node. Each internal
node V has an associated binary part i t ioner that part i t ions
V.region, while each leaf node corresponds to unpartitioned re-
gion. These unpartitioned regions are called cells. (In figure 1,
the cells are labeled with numbers.) Each edge of the binary txee
corresponds to a halfspace: a left edge to the negative halfspace
of the parent node's hyperplane and a right edge to the positive
halfspace. We can then define any region R as the intersection
of open halfspaces corresponding to edges on the path from the

root to R.node. (In figure 1, cell 3 = A" n B+.) Thus, if the ini-
tial region, typically all of D-space, is a convex and open set,
it follows that all of the regions of the tree are convex and
open sets.

The binary partitioner of a partitioned region R, denoted as
R.bp, is comprised of a hyperplane, bp.hp, a sub-hyperplane
(or sub-hp), bp.shp, which is the intersection of R.bp.hp with

R, and its two halfspaces bp.hs- and bp.hs +. Every region R is
the root region of some bsp tree T, denoted as R.tree, and the
symmetrical relation is denoted as T.root_region (to unambiva-
lently denote the set of points corresponding to T.root_region,
as opposed to the data s t ructure, we may also use
T. root_region.domain) . The two subtrees are denoted as
T . n e g _ s u b t r e e and T . p o s _ s u b t r e e l y i n g in

T. root reg ion .bp .hs- and T.root_region.bp.hs + respectively.
The set of cells corresponding to the leaves of T together with
the sub-hyperplanes of its internal nodes forms a partitioning
of T.root region, and is denoted as T.partitioning.

Review of p r e v i o u s w o r k

The original context in which the bsp tree was developed is
that of rendering. The linearity of both planes and viewing rays
means that if a ray intersects a plane it does so at only one
point. And so the plane divides the ray into near and far sec-
tions. This permits inducing a visibil i ty priority ordering on
the three subspaces formed by the plane: near halfspace ->
plane -> far halfspace. Given a bsp tree T, determining this
ordering at every node of the tree in a reeursive manner pro-
vides a total ordering of the elements of T.parti t ioning (see
[Schumaker et al 69] or [Sutherland, Sproull, Schumaker 74],
and [Fuchs, Kedem, Naylor 80] or [Naylor 81]).

These techniques were extended to ray-tracing polyhedra and
non-linear csg-dags in [Naylor and Thibault 86]. This work led
to the association of attributes at the cells and the overt idea of
bsp trees as a representation of polytopes. In [Thibault and
Naylor 87] and [Thibault 87], several new algorithms were in-
troduced. Conversation from a b-rep to a bsp tree and point
classif ication algorithms were derived by extending earlier
very similar algorithms. The work with csg-dags led to an algo-

~ Computer Graphics, Volume 24, Number 4, August 1990

rithrn for evaluating a csg expression in which the primitive
objects are polyhedra each represented by a b-rep, to yield a
single bsp tree corresponding to the expression's value. An
earlier idea of inserting moving objects into a bsp tree led to an
algorithm for evaluating a polyhedral set operation between a
bsp tree and a b-rep to yield a bsp tree, i.e. bspt <op> b-rep ->
bspt. Finally, algorithms were given for generating the poly-
hedral boundary as either a set of convex polygons represented
by a list of vertices or as a set of edges.

In [Bloomberg 86], very similar ideas are developed, and an
algorithm for bspt <op> bspt -> brep is given which classifies
faces of one tree with respect to the other; but no subtrees are
classified atomically. Even more recent work on bsp trees has
provided a means of generating shadows for polyhedral models
[Chin and Feiner 89] , interactive object design and view vol-
ume clipping [Naylor 90a], radiosity [Fussell and Campbell
90], as well as algori thms with asymptot ica l ly improved
bounds for constructing bsp trees from a set of faces in 3D and
edges in 2D (i.e. conversion from b-rep to bsp tree) [Paterson
and Yao 89] and [Paterson and Yao 90]. In [Torres 90], a new
treatment is given of the original problems addressed in
[Schumaker et al 69] of constructing an inter-object bsp tree of
moving objects, where the individual objects are represented as
bsp trees.

Geometr ic model as at tr ibutes on a space

The motivation for inducing a partitioning on a space S is to
provide a means of distinguishing points in S through the as-
sociation of arbitrary attributes with any of its points; that is
to provide the mapping Model(X 6 S) -> Attributes. We use
the bsp tree to implement this general function. We associate
with each element of our partitionings (cells and sub-hps) a set
of C O or higher continuous functions whose domain is consid-
ered to be restricted to that element. This provides a quite gen-
eral mechanism for constructing complex discontinuous func-
tions on S that are piecewise C 0. However, we will restrict our
attention in this paper to the problem of represent regular sets,
which requires the s imples t poss ib le set of at tr ibutes,
Membership : [In, Out }. Nonetheless, the principal result of
this paper is the merging of two independent bsp tree spatial
partit ionings both defined on S. This merging operation is
completely independent of the semantics of any attribute
space, and requires only the ability to determine whether the at-
tribute space of two elements can be represented by a single at-
tribute space. Set operations are then constructed on top of this
merging operation.

II. Merging Trees

The most primitive operation then is merging two spatial par-
titionings : given partitionings of the same space, Pl and P2,
form a new partitioning P3 = P1 + P2 from the pairwise inter-

section of the ceils of P1 andP2 , i.e. a c e l l c3 e P3 ¢=~]

c 1 ~ P1 , c 2 ~ P2 , s . t . c3 = e l n c2 , c3 ~ 0 .
Merging can be illustrated by simply overlaying the two parti-
tionings on top of each other, as shown in figure 2.1.

We will then merge two trees T1 + T2 -> T3, s.t.
T 3 . p a r t i t i o n i n g = T l . p a r t i t i o n i n g + T 2 . p a r t i t i o n i n g .
However, since bsp trees are a hierarchy of regions, we will
need to do somewhat more than merely merge their partition-
ings. Nonetheless, the algorithm to perform merging of bsp
trees is fairly simple and recursive.

T1 . p a r t i t i o n i n g T 2 . p a r t i t i o n i n g

Tl.partitioning + T2.partitioning

Figure 2.1 M e r g i n g p a r t i t i o n i n g s

As with most bsp tree algorithms, we can understanding lree
merging in terms of the paradigm of inserting an object into a
tree; in this case, the object is a tree as well. (Below, we will re-
lax this asymmetrical view). As always, we need the two basic
bsp tree operations: performing a binary parti t ioning of the
object if at a partitioning node and executing a cell <op> object
when at a leaf.

Performing a binary partitioning of a bsp tree by the binary
parti t ioner of a node provides (Bspt, Bp) -> (in.NegHs,
inPosHs : Bspt); that is, a tree is split by a binary partitioner

to yield two trees T- = T n bp.hs" and T + = T n bp.hs +. A Cell
<op> Tree routine is imported by the tree merging routine, and
it is this routine that embodies the semantics of the applica-
tion. Its function is to merge the single set of attributes of a
cell with the attributes of a tree. When the semantics is that of
set operations on polyhedra, the spatial structure of the result
will be either that of the cell or the tree (the specifics are dis-
cussed below in section V).

Given these two operations, the algorithm partitions one
tree, say T2, by the binary partitioner at the root of the other,

T1. The two resulting trees, T2" and T2 +, are defined on exactly
the same reg ion (d o m a i n) as T l . n e g _ s u b t r e e and
Tl .pos_subtree respectively. Thus, we have created two new
sub-problems, each identical in form to the original problem:
merge two trees each of which partit ion the same subspace.
When a cell is reached, the semantics-dependent Cell <op> Tree
routine is called. The basic algorithm is given in Figure 2.2.
An illustration of tree merging appears in Figure 2.3. As one
can see, each cell of T1 is replaced with that subset of T2 that
lies in that cell.

While figure 2.2 provides the essentials of the merging al-
gorithm, there remain a number of secondary issues. The first
of these arises from the fact that the algorithm is completely
symmetric with respect to its two operands, so one has the op-
tion of choosing at each recursive invocation of Merge_Bspt0,
whether to partition the first tree by the second or the second
by the first. A method Choose_PartitionerO can be provided to
Merge Bspt0 for this purpose, and may enforce whatever pol-
icy is appropriate for the current usage. (Note that since the
merge operations may be used to provide a non-commutative
operator, the order of the operands must be preserved by having
two distinct CASEs, one with T1 as the partitioner and one for
T2.)

117

@ SIGGRAPH '90, Dallas, August 6-10, 1990

Merge_Bspts : (T1, T2 : Bspt) -> Bspt
t i p

T y p e s
PartltlonedBspt : (inNegHs, inPosHs : Bspt)

I m p o r t s
Merge_TreeWlth_Cell : (T1, T2 : Bspt) -> Bspt
Partltion_Bspt : (Bspt, Bp) -> PartitionedBspt

D e f i n i t i o n
IF TI. ls a cell OR T2.is a cell

THEN
VAL := M e r g e _ T r e e _ W i t h _ C e l l (T I , T2)

E L S E
Partltlon_Bspt(T2, T l . r o o t _ r e g i o n . b p) ->
VAL.neg subtree .-'-

M e r g e _ B s p t s (Tl .neg_subtree ,
V A L . p o s _ s u b t r e e : =

Merge_Bspts(T l .pos_subtree ,
VAL.root_region := Tl . root_reg ion

END If
RETURN VAL

END Merge_Bspts

F i g u r e 2.2

User defined semantics.

T 2 _ p a r t i t i o n e d

T2_part i t ioned. lnNegHs)

T 2 _ p a r t i t i o n e d . i n P o s H s)

M e r g i n g BSP T r e e s A l g o r i t h m

D / A \

"!"1

~t_ Y

T 2

X
- / \

/N
/ \

f

T1 + T2

Figure 2,3

Secondly, it may be necessary to perform merging of at-
tributes in the sub-hp of the bp that is used as the partitioner.
This can be handled by a Merge_Bp_Attributes0 method. For
representing polyhedra, these attributes are the faces of the
polyhedra and the requisite routines are discussed below in sec-
tion VI.

Finally, it is desirable to perform condensat ion . When the
attributes defined on Tree.root_region.domain are homoge-
neous, there is no reason to maintain a partitioning of the do-
main, and so we will condense the tree into a single cell. Under
the recursive assumption that the two subtrees are already con-
densed, determining homogeneity requires first that they both
be singular, i.e. comprised of a single node, and then that their
attributes be identical. If attributes defined on the domain of the

118

~ A ~ t3

/ ~,,,, ~X\ / X /Yx

M e r g i n g two t r ees

binary partitioner are independent of those of the subtree, then
this subspace must be taken into account as well when deter-
mining homogeneity. Note that in the case of polyhedra,
binary partitioner attributes, i.e. the faces of the polyhedra, are
not independent; they are a function of their neighborhood of
cei ls .

III. Binary Part i t ioning of a BSP Tree

We now address the problem of partitioning a bsp tree. Given a
bsp tree T and a binary partitioner P defined on the same region
of space, we want to form two trees, T- and T + such that T- = T

~ Computer Graphics, Volume 24, Number 4, August 1990

n P.hs" and T + = T ~ P.hs +, where Regions(T-) =- { r- I r- = r

n P.hs ' , r ~ Regions(T), and r" ~ ~ } and similarly for

Regions(T +).
To compute the two trees resulting from this operation, we

will once again use the notion of inserting a geometric entity
into the tree; in this ease, the entity is a binary partitioner.
This insertion process will identify which regions of T lie en-
tirely in P.hs' , or entirely in P.hs +, or are intersected by P.
(Note that insertion visits exactly those regions that are inter-
sected by P). Accomplishing this requires determining the rela-
tive spatial relationships of two bp's and, when they intersect,
splitting each bp by the hyperplane of the other. This opera-
tion as well as the representation and generation of sub-hp's is
discussed below in section IV.

We have the usual form of first distinguishing between cell
and partitioning nodes (singular and non-singular trees), and in
the case of a partitioning node, performing a binary partition-
ing of the inserted entity, i.e. the partitioning bp. Partitioning
a cell is trivial: one needs only to return two copies of that cell.
For a partitioning node, however, the issue is more involved.

The first step is to perform a hi-partitioning between P and
T's bp; that is, each bp is classified with respect to the other
into the standard binary partitioning eases:

Location : { InNegHs , InPosHs , InBoth , On }.
Figure 3.1 shows the four possible geometric configurations.
(Not shown are InNegHs/InPosHs, InPosHs/InPosHs, and On-
parallel, since they have the same geometry but with one
normal flipped.) The routine to perform this operation, Bi-
Partition Bps0 is discussed in section IV.

I n P o s H s / I n N e g H s I n N e g H s / I n N e g H s

On one side

A n t i - p a r a l l e l
I n B o t h O n

Figure 3.1 Spatial relat ionships between two
b inary par t i t i oners

While each of the seven cases are treated separately, they all
share the basic premise that any subtree containing the parti-
tioner will need to be partitioned, and any that does not will
need no modification. So, the case where P's location =
InNegHs results in T.neg_subtree being partitioned but not
T.pos_subtree, and InPosHs requires the opposite action,
InBoth entails partitioning both, and On neither. The parts of
subtrees resulting from this recursive partitioning are then
pieced together to form the two trees which are the return values
of this operation.

To see this more clearly, figure 3.2 attempts to illustrate
what is taking place for the InBoth case in which four subtrees
are generated, two from each subtree of T. During the process of
inserting the bp P into the tree, one views the activity primar-
ily in terms of the two halfspaees of T.root region: we con-
struct P- = P c~ T.hs- and P+ = P n T.hs +. In contrast, the re-
suit, which is formed after any required subtree partitioning, is
instead in terms of the halfspaces of P: T + = T n P.hs + and T- =

T n P.hs-, which also entails computing T.bp- = T.bp n P.hs"

and T.bp + = T.bp n P.hs +. So we have T- being formed out of
pieces from both of T's two subtrees :

T ' . n e g s u b t r e e := T ' s _ n e g _ s u b t r e e . i n N e g H s
T ' . p o s _ s u h t r e e := T ' s _ p o s _ s u b t r e e . l n N e g H s
T ' . r o o t r e g i o n . b p := T ' s _ b p . i n N e g H s

and similarly for T +.

1 o o ~ P A ~ btree+

po, u. T.bp
~ l l ~ . ~ J . bp ' ~ J s u bt ree+

n e~.,u-b'l"~e n e g_s m.e.t"Fe e-
Before Partitioning After Partitioning

~ e ~ ~ t r e e
pos_ ,~..~.,~.~ o o t. b p
r o O n t ; ; _ ~ su btree

VAL.inNegHs VAL.inPosHs

Figure 3.2 Partit ioning a tree for InBoth case

The cases in which P is entirely to one side of T.bp is illus-
trated in figure 3.3. There are four instances of this case ob-
tained by flipping normals; only one is shown here. For this
case T.bp and T.neg_subtree remain intact; only T.pos_subtree
is partitioned. The return values are:

T ' . n e g _ s u b t r e e := T . n e g _ s u b t r e e
T ' . p o s _ s u h t r e e := T ' s p o s _ s u b t r e e . i n N e g H s
T ' . r o o t r eg ion .bp := T .bp

and
T + := T ' s _ p o s _ s u h t r e e , i n P o s H s .

Analogous assignments yield the other three instances.
And finally, the third case of On requires no further parti-

tioning and is given simply by selecting the appropriate
subtrees:

IF normal s are paral le l
THEN

T" := T .neg_sub t ree
T + := T .pos_sub t ree

ELSE
T + := T .neg_sub t ree
T" := T.pos sub t ree

END

119

SIGGRAPH '90, Dallas, August 6-10, 1990

After Partitioning VAL.inNegHs VAL.inPosHs

Figure 3.3 Partitioning a tree for InPosHs case

It is important to note that any newly formed tree should
have the condensation operation applied to it. While not
needed for correctness, this can have a significant impact on
performance. Consider figure 3.4 in which two complex
objects are each contained inside their bounding simplex. If
1"2 is inserted into T1, then T2 will be partitioned by X then Y
and then Z. At this point, the fragment of T2 inside Tl ' s
bounding simplex will be condensed to a single out-cell, and

T1 T2
A /x~ / \

so the merging operation will be complete. Neither of the
subtrees inside the bounding simplices will be visited during
this process.

With the description of Partition_Bspt complete, we make
the following observation : to merge T1 with T2, we can insert
T2 into T1, which entails the apparent paradox of inserting T1
into T2 (actually, Tl ' s bp's), but one piece at a time.

l l ~ t l C t l ~ t O . t ~ Binary t r e e s

Y

X

After partitioning by X After partitioning by X, Y and Z

Figure 3.4 Effect of condensing during partitioning

I V . R e p r e s e n t a t i o n and part i t ioning o f b i n a r y
p a r t i t i o n e r s

Partition Bspt relies upon Bi-Partition_Bps as the basic
operation for determining the relative location of two Bps and
for splitting them when the location is InBoth halfspaces. To
provide this, we will need an explicit representation of the
domain of a bp, i.e. of its sub-hp. This is unlike all previous
operations on bsp trees, which require only hyperplane equa-
tions and possibly a single "representative point" in the inte-
rior of a sub-hp (as in the set operations in [Thibault and
Naylor 87]). Determining the respective locations of two
binary partitioners that partition the same region R can be
based on computing their intersection :

P l . shp n P 2 . s h p
= (R c~ P l .hp) ~ (R c~ P 2 . h p)

= P l . shp c~ P 2 . h p .

As the value of R must appear in the expression, we "encode" it
into a sub-hp. However, when there is no intersection, we need
to know in which halfspace the sub-hp lies, and in this case the
routine that computes Pl.shp n P2.hp can tell us only the
location of P1 with respect to P2.hp. Therefore, we will need to
either use the representative point method or perform the
complementary operation P2.shp n P l .hp .

In the current implementation, a sub-hp is represented by a
b-rep, and for the sake of simplicity we restrict the embedding
space to be 3-dimensional so that the sub-hps are polygons.
Since sub-hps are convex, we can represent them using the
simplest representation: a list of vertices.

Given explicit sub-hps, the hi-partitioning operation is
comprised of two applications of the same operation: partition
a polygon by a plane. First Pl.shp is partitioned by P2.hp. We
then performing the same operation for P2.shp with respect to
P1 .hp

120

~ Computer Graphics, Volume 24, Number 4, August 1990

There is a one problem with using b-reps: sub-hps may be
unbounded sets and b-reps can not represent unbounded sets
(e . g . the s u b - h p o f T . r o o t _ r e g i o n . b p w h e n
T.root region.domain = 3-space is a hyperplane). Our solution
to this is to represent 3-space as a bounded set, in particular as
a box centered at the origin whose size is sufficiently large to
accommodate the geometric model. We call this the universe-
box. Since geometric models typically require no more than 7
orders of magnitude (e.g. from 1 rnm. to 1 km), constructing a
sufficiently large box is easily done without compromising
numerical robustness appreciably , especia l ly when using
double precision.

To generate a representation of the sub-hp for the bp at
some tree node v, we need to first construct a polygonal repre-
sentation of the bp's hp [Thibault 87]. This is done by project-
ing one of the sides of the universe-box onto the hyperplane.
The side chosen is the one whose the ratio of its area to that of
its projection is closest to unity. To achieve this, we choosing
the side whose normal makes the smallest angle with that of
the hyperplane.

Given this "hyperplane as bounded polygon", we insert it
into the txee, partitioning it at each node as usual, but follow-
ing only the path that leads to the target node v. Thus, when
our incipient sub-hp is InBoth, we retain only that half which
is in the region of the next node on the path. When we reach v,
we have the desired sub-hp. Given any bsp tree containing no
explicit sub-hp's, we will perform this operation for every node
in the tree. (Rather than following a path from the root to the
"current" node, we actually follow the path in the opposite
direction, from the node to the root via parent links. This of
course is a unique path and avoids the issue in the root-to-node
order of knowing whether to follow the left or right child.)

Anytime an affine transformation is applied to a tree, those
sub-hp's which are "unbounded" will need to be recomputed
since they will no longer correspond to the intersection of
their hyperplane with the universe-box. To facilitate this, each
sub-hp is tagged to indicate whether it is unbounded, and if so,
then regenerated when transformed. (If one uses the first D+I
nodes to construct a bounding simplex, then only the first D
sub-hps of this simplex are unbounded, i.e intersect the uni-
verse box.) All other sub-hp's can be transformed normally (by
their vertices), since they will remain bounded (under the
assumption that the universe-box is sufficiently large).

V. Set O p e r a t i o n s o n P o l y h e d r a

Once the mechanism for merging spatial partitionings is in
place, performing set operations on polyhedra is a relatively
simple matter. The merging process recurses until one of the
two operands is homogeneous, i.e. is a cell, at which point we
use a routine for merging cell attributes with those of some ar-
bitrary tree (which may also be a cell). For set operations, this
amounts to simply selecting either the cell or the tree, possi-
bly complemented, as a function of the membership attribute
(Figure 5.1). Complementation of a tree involves simply the
boolean complementation of the membership attribute. Figure
5.2 illustrates the union of two bsp tree objects.

In general, there is more to do than this. I f there are other
attributes, such as color, index of refraction, density, or what-
ever, these will need to be merged in some appropriate way as
well. And so the above routine will need to be augmented to
handle these. (Exactly how a particular attribute, such as color
or transparency, should be merged in a union for instance, is
currently an unsettled issue). Note that this additional merging
of attributes may generate condensable subtrees.

Ce l l _Se tOp_Tree : (T1, T2 : Bspt) -> Bspt
. o m
° ° -

VAL :=
I F T l . l s an I n C e l l

THEN
C A S E operat ion

Union -> T1
Intersect ion -> T2
Difference -> Complement_Bs p t (

S y m m e t r i c _ D i f f e r e n c e ->
C o m p l e m e n t _ B s p t (T2)

END
E L S E I F T l . i s an O u t C e l i

THEN
C A S E operat ion

Union -> T2
Intersect ion -> TI
Difference -> T1
S y m m e t r i c _ D i f f e r e n c e -> T2

END

ELSE Repeat the above with T1 and T2 swapped.

END C e l l _ S e t O p _ T r e e

F i g u r e 5.1 C e l l _ S e t O p T r e e for Set
O p e r a t i o n s

T2)

VI . P o l y h e d r a l F a c e s

While the above routine covers "attribute maintenance" for D-
dimensional ceils, there remains the same issue for the D-1
domains of the binary partitioners. For polyhedra, the entire
boundary of the set lies in the sub-hps, and while the boundary
is wholly derivable from the D-cells, one may wish to explic-
itly represent the set of boundary faces. The primary motiva-
tion for doing so is to provide the input required by rendering
systems that are based on polygon drawing. Using the bsp la'ee,
one can provide a visibility priority ordering of the faces to
such a system. (Note that if instead one uses ray-tracing, the
explicit representation of the boundary is unnecessary.)

The boundary of a set is precisely those points whose t -
neighborhood contains both interior and exterior points for all

~. Thus, any subset of a sub-hp which has an in-cell on one side
and an out-cell on the other will be on the boundary of the
polyhedra. In figure 6, we illustrate this idea by showing the
boundary along with normals to the faces oriented to "point" to
the exterior. Note that a sub-hp may contain more than one face
and that the face orientations may be either paral lel to the
hyperplane orientation or anti-parallel.

There are two possible approaches to face generation: either
in every tree maintain faces as an intrinsic component of the
representation, or delay creation of any faces until after an
entire expression has been evaluated. Both approaches utilize a
neighborhood operation that finds those cells in the neighbor-
hood of a sub-hp, or equivalently, those cells whose boundary
intersects a sub-hp. Consider any subtree T. If we insert the
sub-hp at T.root_region into T.neg_subtree and then into
T.pos subtree, the cells that are reached are precisely those in
the sub-hp's neighborhood. These cells can be natural ly
grouped into those in the posit ive subtree and those in the
negative subtree. In addition, the search of a subtree will parti-
tion the sub-hp into subsets that bound a single cell, and so
will classify the sub-hp into "in" and "out" subsets.

121

@ SIGGRAPH '90, Dallas, August 6-10, 1990

~ 1 0 1/ ~ 0 ~ ' X ~ A 1/Z~0 %

1 I l / r \

Figure 5.2 Union of two objects

/ c \ o o
1 0 0 1

Figure 6 Faces of a po lytope

So with this, generation of faces from a sub-hp is straight-
forward [Thibault 87]. First, classify the sub-hp with respect to
one of T's subtrees, say the negative subtree, and then classify
the resulting fragments with respect to the positive subtree.
This yields fragments whose neighborhood is "homogeneous",
i.e. is the same for all points in the fragment. With this infor-
mation, we can generate the following classifications:

n e g _ s u b t r e e p o s _ s u b t r e e c l a s s i f i c a t i o n

i n I n i n
i n o u t on (para l l e l)
o u t 1 n on (ant i -paral le l)
o u t o u t o u t

plane. To generate all of the faces of a tree that contains ex-
plicit sub-hps but not explicit faces, one simply performs this
neighborhood operation for every binary partitioner in the
tree.

The alternative is to maintain explicit faces at all times. So
the result of a single set operation, T3 := T1 <op> T2, will
entail generating all of the polyhedral faces of "I"3 before 1"3 is
used in any subsequent set operations. The objective is the
same as before, to know the classification of all sub-hps, but
the approach is less direct. Instead of classifying sub-hps, we
employ the fact that the faces of T3 are a subset of those of T1
and T2 combined, and in effect classify only the subsets of sub-
hps "covered" by the faces. Note that the addition of faces to
the r e p r e s e n t a t i o n wil l r equ i re e x t e n d i n g both
Complement_Bspt0 to swap parallel and anti-parallel face lists
and Bi-Partition_Bp0 to partition any faces lying in a binary
partitioner (this will be needed only if its sub-hp is InBoth, and
thus the sub-hp provides a "convex hull" test for the faces).

We will use a combination of two techniques already intro-
duced: cell <op> tree and the neighborhood operation. The first
is employed under two circumstances. When, during the recur-
sire process of tree merging, one of the two arguments is a
cell, the routine Cell_SetOp_Tree0 is called. This executes"the
set operation by returning one of the two arguments (possibly
complemented), and so implicitly classifies any faces in the
process . The second c i r cums t ance occurs dur ing
Partition_Bspt0 whenever the partitioning bp reaches a ceil.
Its face fragments can then have the same rules applied to them.
The only remaining case is that of on-faces. Whenever the On
case in Partition_Bspt0 occurs we will need to use the neigh-
borhood operation in leu of direct classification by cells. On-
faces from T1 (T2) will need to be classified with respect to the
subtrees of T2 (T1) (see [Thibault and Naylor 87] and [Naylor
90a]).

Retaining the o n fragments, separated into parallel and
anti-parallel lists, as part of each binary partitioner provides
the polyhedral faces. These faces, in fact, provide only a partial
classification of the partitioner's domain. There are two kinds
of on-regions, parallel and anti-parallel, but in-regions and
out-regions are lumped together implicitly as n o t - o n . Note that
these face fragments are convex, since they are generated by
the intersection of halfspaces with their supporting hyper-

V I I . N u m e r i c a l R o b u s t n e s s

The occurrence of numerical errors due to finite arithmetic has
been a nemesis of geometric computing since its inception. Its
negative impact is greatest when the result of a numerical com-
putation is used to discriminate logical alternatives in an algo-
rithm. This can lead to arbitrarily "discontinuous" behavior;
that is, the output of the algorithm can be highly sensitive to

122

~ Computer Graphics, Volume 24, Number 4, August 1990

small random perturbations of the discriminators (the program
may fail as well). While a number of schemes have been devised
to ameliorate the problem, the simplest and most common is

the use of e- intervals . For example, a discrimination based on
whether a real value X is less than, greater than, or equal to 0

can be replaced with one that determines whether a X < -e, X >

+E, or in [- e +el respect ively. More sophist icated methods
enforce the intended semantics through a variety of schemes (
see e.g. [Karasiek 89]).

The only numerical computation in this work is the parti-
tioning of a polygon by a plane. Its primitive operation is the
dot product of a point and a plane to determine the location of
that point with respect to the plane. The specific algorithm we
use assumes the semantics of planar, convex polygons, and we
rely on the epsilon method just described to attain robustness
(to dampen the noise). Thus, the hyperplanes are in effect slabs

2E thick. Any failure of this technique is detected, but no
correction strategy is evident other than using larger epsilons
(this has been in use since [Naylor 81]).

Unfortunately, this approach is insufficient to achieve a ro-
bust bi-parti t ioning operation. In fact, larger epsilon exacer-
bate the problem. Recall that there is a correlation between the
location of the two bps: P l ' s location = IrgBoth ¢=> P2's loca-

tion = InBoth, and similarly On ¢=> On, and NotInBoth ¢0
NotInBoth . Numerically this does not always hold. Our ap-
proach is to detect inconsistencies and induce a mapping to one
of the consistent result. When one location is InBoth and the
other is InNegHs or InPosHs, we can force the the former to be
either InNegHs or InPosHs by selecting the "half" which
contain vertices farthest from the partitioning plane, or we can
force the second to the InBoth condition by extracting "on"
vertices. If only one bp is On, we force it to a value consistent
with the other bp. While we believe that forcing semantic con-
sistency is essential, our current choices for enforcing this are
at this point only tentative.

Numerical problems also affect attaining the semantics of
the neighborhood operation. The method used for constructing
bsp trees, defined in the continuum, implies that any sets lying
in T.root region.bp.shp will not be On any sub-hp in either of
T's subtrees; however, numerically this does not always hold.
We employ the following defense.When a face fragment from
node V is classified as On during the neighborhood operation at
a descendant node U, we essentially treat that node as if it were
contained in the face's sub-hp, i.e. as if it did not exist. We
then choose the subtree of U that is "not adjacent" to V, and
continue the search.

The combination of these techniques has led to a robust set
operation algorithm is the sense that the program will not fail
and its output is in the neighborhood of the ideal output over a
large numerical range. For example, the standard test in which a
set operation is performed between a cube and a second cube
that has been rotated successively about each of its three prin-

cipal axes by an angle 0t has been executed successfully with

= 10 -9 with e < 10 -11, including e = 0, using 64-bit floating

point numbers. For 10 -9 > a > 10 -14, union continued to give
the same results, while intersection and difference found some
sides to be equivalent. As the value of e approaches ix, more
equiva lences are p roduced unti l the two objec ts are
computationally considered identical.

While using a small epsilon is interesting for testing the
numerical l imits, large epsi lons are much more desirable
(thicker hyperplanes) since they limit the size of the smallest
fragments and so avoid representing features far below any

viewing resolution. An upper bound to the thickness is the
point at which the affect of treating faces as being co-planar,
when in fact they are not, becomes visible to a viewer.

V I I I . C o m p l e x i t y

A simple worst case lower bound of 12(n 2) is obtained by not-
ing that a checker board can be constructed from the symmetric
difference of two trees, the first composed of n horizontal
strips with alternating boolean values and the second com-
posed of n similiar vertical strips.

As for an upper bound, the binary partitioner of each node
of one tree is compared with the bp of each node of the second
tree at most once, giving O(/T1 /* /T2 /) or more simply O(n2).
This analysis would be sufficient if each comparison was guar-
anteed to be 0(1). However, it is possible for a sub-hp to be of
size O(n), e.g. the base of an n sided cone. If this were true for

every sub-hp, Partition Bspt could take O(n 2) per call, giv-
ing a total time of O(n 3).

To show that this is not the case, we first observe that each
sub-hp vertex is compared to a hyperplane of the other tree at
most once per node. So if we can show that the total number of

sub-hp vertices is O(n), we will have O(n 2) total work. To
prove this we use a r rangements of hyperp lanes . An
arrangement comprised of n d-cells can be represented by a bsp
tree with an isomorphism from arrangement cells to bsp tree
cells (leaf nodes) [Naylor 81]. Since it is known that the
number of vertices of an arrangement is O(n) and the sub-hp
vertices are a subset of these, it can be shown that despite the
fact that there are multiple instances of some vertices, the
number of sub-hp vertices of an arrangement is also O(n). Any
bsp tree can be converted to its corresponding arrangement by
rep lac ing each ce l l / l ea f with a tree represen t ing the
parti t ioning of that cell by all hyperplanes of the tree that
intersect it. If we now remove any sub-hp separating two of the
newly created cells, the new number of vertices will be:

n * O (1) - f l (l) < (n - l) * O(1).
If this is repeated , one node at a time, until the original tree is
recreated, we will have O (/ T /) vertices. We then have that

merging bsp trees is worst case optimal t9(n 2).
Of even greater interest is the expected case. This requires a

definition of "good" trees, which we have developed but do not
have space here to explore. If, for now, we simply take good to
mean balanced, then merging two balanced trees of size n can
produce, at worst, a tree with maximum depth of 2 log n. Or
more generally speaking, merging two good trees should yield
a reasonably good tree. Note that the use of a bounding simplex
as in figure 3.4 can lead to O(d) time to merge two trees whose
bounding simplices are disjoint and the interior of one simplex
is not intersected by a sub-hp of the other.

C o n c l u d i n g r e m a r k s

It is worth comparing this algorithm to the method in [Thibault
and Naylor 87]. One of the two methods in that work performs a
set operation between a bsp tree represented polyhedron and a
b-rep represented polyhedron. The inserted entity is the b-rep
polyhedron, represented as a list of polygons. In this work, we
have instead a bsp tree, clearly a more complex structure than a
list, although not necessari ly more complex than the more
general b-rep structure as a hierarchy of lists (not used in
[Thibault and Naylor 87]). However, there are at least two ways
in which one gains from the using a bsp tree.

123

@ SIGGRAPH '90, Dallas, August 6-10, 1990

The first advantage arises from the efficiency of a hierarchi-
cal search structure: entire subtrees can be classified without
examining their contents. In the average case, this can lead to
O(log n) behavior instead of O(n). The second is algorithmic
simplicity. Besides the obvious advantage of having only the
bsp tree data type to deal with, it is difficult to determine with a
b-rep the relative spatial classification of some other entity.
The algorithms in [Thibault and Naylor 87] require, when the
faees of the b-rep object are entirely to one side of a partition-
ins hyperplane, the determination of whether the correspond-
ing sub-hp is inside or outside of the polyhedron. While
[Thibault and Naylor 87] gives the simplest solutions for this
in 2D and 3D, the method is cumbersome and does not easily
generalize to arbitrary dimensions (so much so that we have
not seriously attempted to do so). In our new setting, while we
still need this classification of the sub-hp with respect to the
inserted object, its spatial structure being a bsp tree makes this
straightforward, and in fact occurs as part of the partitioning
operation itself, thereby necessitating no additional considera-
tion and so solves the problem for arbitrary dimensions.

This work remains a hybrid approach, since b-reps are used
for polygons, both as sub-hps and faces. However, prior to im-
plementing this scheme, we devised an "all bsp tree" represen-
tation which dispenses with b-reps entirely (see [Naylor 90b]
for a brief description). Thus, the sub-hps and the faces of a d-
dimensional tree are represented by d-1 dimensional trees, and
so on reeursing in dimension until d = 0. This representation
has many advantages including dimension independence as
well as obviating the problem encountered here with b-reps not
being able to represent unbounded sets. We chose to imple-
ment the hybrid approach described here to provide a more
easily attainable intermediate step, since many techniques
have been developed using polygons as b-reps that must be
provided in the new scheme. Nonetheless, the routines
Merge_Bspts and Partition Bspt are essentially the same in
both schemes, the difference being limited primarily to Bi-
Partition_Bps; and forming the boundary requires only the
capabilities already provided by these routines.

R e f e r e n c e s

[Bloomberg 86]
Sandra H. Bloomberg,"A Representation of Solid Objects
for Performing Boolean Operations", U.N.C. Computer
Science Technical Report 86-006 (1986).

[Chin and Feiner 89]
N. Chin and S. Feiner,"Near Real-Time Shadow Generation
Using BSP Trees", Compute r Graphics Vol. 23(3), pp.
99-106, (Aug. 1989).

[Fuchs, Kedem, and Naylor 80]
H. Fuchs, Z. Kedem, and B. Naylor, "On Visible Surface
Generation by a Priori Tree Structures," C o m p u t e r
Graph ics Vol. 14(3), pp, 124-133, (June 1980).

[Fussell and Campbdl 90]
Donald Fussell and A.T. Campbell, "Adaptive Mesh
Generation for Global Diffuse Illumination," C o m p u t e r
Graph ics Vol. 24(3), (Aug. 1990).

[Hoffmann 89]
Christoph M. Hoffmann, G e o m e t r i c
Modeling, Morgan Kaufmann, 1989.

and Solid

124

[Karasick 89]
Michael Karasick, "On the Representat ion and
Manipulation of Rigid Solids," Ph.D. Thesis, CorneU
University (March 1989).

[Mantyla 88]
Martti Mantyla, Solid Modeling, Computer Science
Press, 1988.

[Naylor 81]
Bruce F. Naylor, "A Priori Based Techniques for
Determining Visibility Priority for 3-D Scenes," Ph.D.
Thesis, University of Texas at Dallas (May 1981),

[Naylor 9Oa]
Bruce F. Naylor, "SCULPT : An Interactive Solid Modeling
Tool", Proc. of Graphics Interface, (May 1990).

[Naylor 90b]
Bruce F. Naylor, "Binary Space Partitioning Trees as an
Alternative Representation of Polytopes", C o m p u t e r
Aided Design, Vol 22(4), (May 1990).

[Naylor and Thibault 86]
Bruce F. Naylor and William C. Thibauh, "Application of
BSP Trees to Ray-Tracing and CSG Evaluation," Technical
Report GIT-ICS 86/03, School of Information and
Computer Science, Georgia Institute of Technology,
Atlanta, Georgia 30332 (February 1986).

[Paterson and Yao 89]
M.S. Paterson and F.F. Yao, "Binary partitions with
applications to hidden-surface removal and solid
modeling", Proceedings of Fifth Symp. on Computational
Geometry, pp. 23-32, (1989).

[Paterson and Yao 90]
M.S. Paterson and F.F. Yam "Optimal Binary Space
Partitions for Orthogonal Objects", Proceedings of Ist
Symp. on Discrete Algorithms, pp. 100-106, (Jan. 1990).

[Schumaker et al 69]
R. A. Schumacker, R. Brand, M. Gilliland, and W. Sharp,
"Study for Applying Computer-Generated Images to Visual
Simulation," AFHRL-TR-69-14, U.S. Air Force Human
Resources Laboratory (1969).

[Sutherland, Sproull and Schumaker 74]
I.E. Sutherland, R.F. Sproull and R. A. Schumacker, "A
Characterization of Ten hidden Surface Algorithms,"
ACM Comput ing Surveys Vol 6(1), (1974).

[Thibault and Naylor 87]
W. Thibauh and B. Naylor, "Set Operations On Polyhedra
Using Binary Space Partitioning Trees," C o m p u t e r
Graph les Vol. 21(4), (July 1987).

[Thibault 87]
William C. Thibault, "Application of Binary Space
Partitioning Trees to Geometric Modeling and Ray-
Tracing", Ph.D. Dissertation, Georgia Institute of
Technology, Atlanta, Georgia, (1987).

[Torres 90]
Enric Torres, "Optimization of the Binary Space Partition
Algorithm (BSP) for the Visualization of Dynamic Scenes"
Eurographics '90 (Sept. 1990).

